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Abstract 
FPIX is a pixel architecture designed for colliding-beam 

experiments at the Tevatron. Its most important application 
to date is the BTeV experiment. PreFPIX2 is a chip designed 
to test the FPIX Core, i.e. the pixel control and r 
architecture. This FPIX Core will be mated to a Periphqy 
specific to a particular experiment. 

Earlier plans called for the BTeV FPIX chip to be 
designed in a rad-hard process. However, deep-submicron 
CMOS processes have demonstrated appropriate radiation 
tolerance at a lower cost and with greater reliability. 
Therefore, PreFPIX2 has been fabricated in a 0.25 micron 
process utilizing radiation tolerant design techniques. 

The architecture has undergone substantial development 
from earlier versions of FPIX. Most notable are the 
improvements to the column token passing scheme and to the 
End-of-column logic. Extensive simulations were performed 
using both SPICE and structural-level Verilog. Monte Carlo 
physics simulations of the BTeV pixel detector at half, full 
and double the planned luminosity were converted to Verilog 
compatible input files for the chip csimulations, allowing the 
designers to observe the chip operating under real conditions 
and for extended periods of time. Analyses of the results 
reveal that at , all luminosities the FPIX Core correctly 
identifies better than 99.6% of input hits. Bench tests of 
fabricated chips confirm the accuracy of the simulations. 

I. INTRODUCTION 
The FPIX architecture has been under development at 

Fermilab for the last three years. At present, the driving force 
behind this work is the BTeV experiment [ l ]  though 
significant effort has been made in the design process to 
broaden the applicability of this architecture to fit any 
Tevatron experiment. In BTeV, the pixel detector will be 
employed for on-line track finding for the lowest level trigger 
system [2], and therefore, the pixel chips are required to read 
out all hit data from every crossing [3]. Given the expected 
distance from the beam (6” for the nearest chips) and the 
expected luminosity (2x16’ cm” s-’), this means that the 
chip closest to the beam line will be expected to read out an 
average of 1.25 pixels per BCO crossing with statistical 
fluctuations often much higher. 

PreFPIX2 is a developmental step in the evolution of the 
final FPIX architecture [4]. After the completion of FPIXl, it 
became apparent that certain functions such as pixel control 
and readout were independent of the requirements of any 
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given experiment but that other functions, like data packing 
and communication with data acquisition hardware, changed 
for every experiment. Those functions independent of 
experimental requirements were organized into the FPIX 
Core. Experimentally dependent requirements were 
organized into the Periphery. PreFPIX2 represents the 
completion of the FPIX Core architecture. The FPIX 
Periphery specific to the BTeV experiment is under 
development. 

TMe’chip was developed in a 0.25pm process, using 
radiation tolerant design techniques such as enclosed 
translstors [ 5 ] .  Recent tests show that this will enable FPIX 
to achieve the desired radiation tolerance (25-30 Mrad) 
without resorting to a rad-hard process [6]. PreFPIX2 has 
been developed to test a number of algorithmic and electrical 
modifications to the original read-out control system 
cleveloped in FPIXl [4]. Most notably, the programmable 
ability to operate in either an externally triggered or a self- 
triggered mode has been eliminated. The FPIX Core itself is 
now purely self-triggered. 

In Section 11, the FPIX Core architecture will be 
described, Section 111 will cover major developments to the 
FPIX , architecture. Finally, Section IV will discuss the 
detailed simulation technique employed in preFPIX2B 
development and the results obtained thus far. 

11. FPIX ARCHITECTURE 

A.  Core versus Periphery 
The basic job of the FPIX Core is to convert the various 

pixel hits into a predictable data streain (see Figure 1). 
Whenever coreTalking is active, the Core will output a new 
data word (coreData) with every rising edge of the Readout 
clock. Moreover, coreData will be stable by the falling edge 
of the Readout clock . When coreTalking is inactive, 
coreData is zero. 

CoreData itself is a 24-bit wide word that consists of three 
bits for hit magnitude from a 3-bit FADC located in each 
Pixel Cell, five bits for column location, eight bits for row 
location, and eight bits for time stamp. 
I I 

IcoreData a WO X W1 X W2 X W3 E O  

Figure 1 FPIX Core Data Stream. 
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Figure 2 The Core - Periphery arrangement in the FPIX 
architecture 

The Periphery communicates with the Core by providing 
the clocks and two control signals, RejectHits and SendData. 
When RejectHits is active, the Core is instructed to stop 
accepting new hits. Pixels already hit can still be read out. 
When SendData is active, the Periphery is telling the Core 
that it is ready to accept data. When SendData is inactive, 
the Core will send no more data, but it can continue to accept 
hits. 

Using the structure in Figure 2, it is possible to imagine a 
wide range of Periphery cells customized to an experimentk 
needs. 

B. Core Organization 
The FPIX Core is a column-based architecture that uses 

an indirect addressing scheme to associate pixel hits with a 
time stamp. It is best understood as consisting of three 
mutually dependent functional blocks as shown in Figure 3. 
These three blocks are the Core Logic, the End-of-column 
Logic and the Pixel Cell. 

The Core Logic understands time. At the rising edge of 
the beam clock, it stamps every time slice with an eight-bit 
beam crossing (BCO) number. This number is broadcast to 
all End-of-column Logic blocks. The Core Logic also 
contains a very simple state machine that knows if the Core is 
Talking or Silent. The Core is Silent until the End-of- 
column Logic blocks indicate that they have data to output. 
When this happens, at the next rising edge of the Readout 

Pixel Cell 

Pixel Cell 

End of Column End of Column End of Column End of Column 
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Figure 3 The FPIX Core Organization. In a full FPlX chip, 
there would be 18 columns with 160 Pixel Cells,per column 

clock, the Core will switch to the Talking state, and output 
can begin. The Core Logic does not wait for any kind of chip 
token or validation from the Data Acquisition (DAQ) 
hardware. That would be the job of the Periphery block. 
While in the Talking state, the Core starts passing a 
Horizontal Token across the End-of-column Logic blocks to 
arbitrate rights to the output bus. When the Horizontal 
Token drops out of the other side of the End-of-column Logic 
blocks readout is done. The Core switches back to the Silent 
state at the next rising edge of the Readout clock. 

The End-of-column Logic blocks are considerably more 
complicated. They also understand time in that, whenever 
there is a hit, they store the BCO numbers broadcast by the 
Core Logic. Obviously, they also understand hits, which are 
driven to them from the Pixel Cells via the HFastOR signal, a 
distributed OR-gate with a pull-down transistor in every Pixel 
Cell in the column. The End-of-column Logic Blocks also 
understand the existence of the Pixel Cells because they 
communicate to those pixels through a series of commands 
and tokens. Finally, the End-of-column Logic Blocks 
understand output. When the Core is in the Talking state and 
when a particular End-of-column Logic Block has the 
Horizontal Token and when that End-of-column Logic Block 
has hit pixels to output, then it outputs those pixels. 

The Pixel Cells themselves know nothing of time. They 
only understand hits and commands from their End-of- 
column Logic block. These commands are Idle (do nothing), 
Listen (listen for new hits), Reset (reset your contents), and 
Output (output your contents). There are four sets of such 
commands coming from the End-of-column Logic block. If a 
pixel is Empty and it receives a hit, it associates itself with 
whichever command set is issuing the Listen command. 
From that point and until the Pixel Cell is reset, it obeys only 
the commands from the associated command set. The Pixel 
Cells also communicate back to the End-of-column Logic 
bock via the fast ORs. The HFastOR communicates hits in 
response to a Listen command and the FGastOR 
communicates the presence of Pixel Cells as yet unread in 
response to an Output command. Rights to the column output 
bus are arbitrated by a Column Token issued by the End-of- 
column Logic block. 

The original FPIX architecture included the ability to 
switch between an externally triggered or self-triggered 
mode. In the externally triggered mode, an external source 
provided the chip with a BCO number which was compared 
to the BCO numbers latched in the End-of-column Logic 
Blocks. In the self-triggered mode, a second BCO counter 
broadcast requested BCO numbers. If there was a match with 
any stored BCO number in any End-of-column Logic block, 
then the counter would be stopped and all hit pixels 
associated with that BCO number would be read out. This 
constant need to compare requested BCO numbers to stored 
BCO numbers reduced the efficiency of the readout scheme. 
In preFPIX2, there are no such BCO comparisons. Instead, if 
any End-of-column Logic block has any data to output, it 
immediately alerts the Core Logic, which then switches to the 
Talking state. Unlike the original output scheme, this 
method does not guarantee that hit pixels would be output in 

9- 104 



time stamp order. However, the new output scheme 
dramatically improves readout efficiency. 

111. DEVELOPMENTS IN PREFPIX2 

A.  End-of-column Logic 
The original FPIX architecture utilized four Command 

State Machines, one for each command set. The state 
machines were simple, with only two states, Empty and Full. 
However, since the state machines made their transitions at 
the rising edge of the BCO clock, great pains were necessary 
to ensure that information synchronous to the Readout Clock, 
such as the completion of an output, arrived to these state 
machines with enough setup and hold time. Moreover, the 
original architecture required a priority encoder state 
machine to determine which command set would be the next 
to issue the Listen Command. This required a substantial 
amount of room, and created some timing problems of its 
own. 

In the new FPIX Core, these problems are solved as 
shown in Figure 4. First, there is the addition of the Column 
State Machine, which operates at the rising edge of the 

ommand State Machine 
(changes on the rising edge of the BCO clock) 

Hit Priority AND 

State 

olumn State Machine 
(changes on the rising edge of the Read clock) 

Horizontal Token 

Figure 4 End-of-column Logic State Machines 

Readout Clock. Second, the simple two-state Command State 
Machines are replaced with four-state Command State 
Machines that still operate on the rising edge of the BCO 
clock. By developing the state machines with different 
clocks, the synchronicity problems are eliminated. The 
Column State Machine governs all activity that must be 
synchronous with the Readout Clock. The Command State 
Machines govern all activity that must be synchronous with 
the BCO Clock. 

A simple, purely combinatorial priority encoder chooses 
which Command State Machine will be the next to enter the 
Listen,state from among those state machines currently in the 
Empty State. In the Empty State, the Command State 
Machines issue the Idle Command. In the Listen State, they 
issue the Listen Command. Once a hit is received, several 
things happen. First, the BCO number currently being 
broadcast by the Core Logic is stored in a register associated 
with the Command State Machine currently in the Listen 
State. Second, that state machine makes the transition to the 
Full State where it once again issues the Idle command. 
Third, the state machine picked by the Hit Priority Encoder as 
next to Listen moves to the Listen State. 

Since it is possible for more than one Command State 
e to be in the Full state at the same time, a second 

priority encoder is required. This Output Priority Encoder is 
necessarily more complicated than the Hit Priority Encoder. 
For example, if the DAQ system can read a chip faster than 
hits are input to it, then low priority Command State 
Machines may never enter the Listen state, and this would 
have no effect on our efficiency. High priority Command 
State Machines would do all the work. However, if a state 
machine enters the Full state, then it must reach the Output 
state as quickly as possible or that data will be lost. In other 
words, somehow all machines in the Full state must have 
equal priority while, at the same time, something must 
distinguish them so that a choice can be made. Finally, to 
minimize the transistor count and to maintain the isolation of 
the Readout and BCO clocks, the Output Priority Encoder 
must also be purely combinatorial. The solution is to rely on 
the states of the Command State Machines and to use a 
circular scheme as shown in Figure 5. If State Machine A is 
in the Output state, then State Machine B has the highest 
priority in the Output Priority Encoder, then C and then D. If 
State Machine B is in the Output state, then State Machine C 
has the highest priority then D and then A. If no one is in the 
Output state, then State Machine A has the highest priority. 
Once in the Output State, the state machine issues the Output 
Command until it receives the Output Done signal from the 
Column State Machine. At that point, the Reset Command is 
issued as a redundant means of making sure all pixels 
associated with this Command State machine are cleared. 

The Column State Machine starts in the “Nothing to Say” 
or Nothing State where it remains until it sees an Output 
(Read) command issued by any of the Command State 
Machines. At the next rising edge of the Read Clock, the 
Column State Machine makes the transition to the 
‘Something to Say” or Something State. At this point, the 
Core logic is alerted to the fact that there is data to output, 
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Figure 5 A Logical Diagram of the Output Piiority Encoder 

and the Column Tokens are sent up to the first Pixel Cell that 
needs to be output. The state machine then waits for the 
arrival of the Horizontal Token from the Core Logic. When 
the token arrives, the Column State Machine makes the 
transition to the Talking state, and it releases the Readout 
clock to the Pixel Cells enabling them to output their data. 
Simultaneously, the stored BCO number (which associates 
the hit pixels with the time they were hit) is driven onto the 
bus. The last pixel is being read out when the RFastOR goes 
away. This signals the completion of the read cycle. At the 
next rising edge of the Read Clock, the Column State 
Machine makes the transition to the Silent state. This sets 
the Output Done signal informing the Command State 
Machine that it can make its own transition from the Output 
to the Empty State. The Output Done signal is reset when the 
Command State Machine reaches the Empty state. When the 
entire array has been read out, the Horizontal Token drops 
out of the last End-of-column Logic Block, and the Core 
Logic makes its transition from Talking to Silent. This 
signals to all the Column State Machines that they can make 
their own transition back to the Nothing State. 

B. Token Passing Logic 
Experience with earlier versions of FPIX has revealed that 

there are two limiting factors in readout speed related to the 
Column Token. 

First, speed is limited by how fast the token can be passed 
from one hit pixel to another. Once a hit pixel has been 
ordered to Output, it waits for the Column Token, grabs it 
and then drives its data onto the bus at the rising edge of the 
Read Clock. Simultaneously, it releases the token to the next 
hit pixel in the column. Under worst case conditions, that 
token must travel almost the entire length of the column 
before it reaches the next hit pixel and it must do this before 
the next rising edge of the Read Clock. The amount of time 
it takes for the token to pass through an empty pixel is called 
the skip frequency. Therefore, the maximum readout speed is 

Figure 6:  The Token Passing circuitry 

equal to the skip frequency divided by the number of pixels in 
the column. 

Second, speed is limited by how long it takes an entire 
column to restore itself after a read has been completed. This 
determines how rapidly successive read cycles can be made. 

The token passing architecture shown in Figure 6 has 
been optimized in preFPIX2 to permit skipping frequencies 
between 7 and 8GHz, yielding readout clock frequencies in 
excess of 40 MHz. It is also resettable, allowing for 
maximum speed in successive read cycles. 

IV. MONTE CARLO-VERILOG SIMULATION 

A unique and very comprehensive method of design and 
simulation was used on the FPIX Core. First, individual 
digital subcircuits including nand gates, nor gates, inverters, 
CMOS transmission gates, SR-flip-flops and D-flip-flops 
were simulated using SPICE to determine their best, worst 
and typical propagation delays. Next, all critical drivers such 
as Command Drivers and Address Drivers were similarly 
evaluated under their expected loads. All of these delays 
were transferred into the Verilog hardware description 
language. Then the readout architecture and control system 
were constructed in a bottom-up fashion from those basic 
digital components. No behavioral modeling was permitted 
in the FPIX Core, and great attention was given to ensuring 
that gates were not excessively loaded with capacitance. The 
net result was a Verilog model of the FPIX Core accurate to 
the gate level and, in many places, the transistor level. It 
modeled the entire data path from the output of each of the 
2880 analog front-ends to the pads of the chip. 

This procedure yielded a number of benefits. First, 
through software, purely structural Verilog code can be 
converted into schematics. Therefore, layout-versus- 
schematic (LVS) comparisons became, in effect, layout- 
versus-Verilog comparisons. Second, this design procedure 
ultimately produced a Verilog model of the Core that was 
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extremely accurate with respect to timing. SPICE 
simulations were performed regularly at higher and Pigher 
levels of the hierarchy to ensure this. 

Next, the analog front end of each pixel was mod$ed, 
behaviorally. The model describes both the time walk an& ’ 
the dead time of the analog front end. Moreover, the model 
includes the way time walk and dead time change as a 
function of charge magnitude. The information necessary for 
this model was determined experimentally from prototype 
versions of the front end. 

Monte Carlo analysis of 5000 beam crossover periods in 
the interaction chamber was done using MCFAST, maki’ng 
geometric cuts around the region that would be occupied by 
the hottest chip. This produced a list of hit pixels with their 
associated charge magnitudes in each of the 5000 time slices. 
Different analyses were made assuming the expected 
luminosity of the beam, half that luminosity and twice that 
luminosity. The results of these analyses were converted into 
Verilog and used as input to the FPIX Core model. 

Finally, a rudimentary DAQ system was modeled to 
capture the output of the FPIX Core. This output was 
reconstructed into hit pixels, their hit magnitude and time 
stamp. The input and output lists were compared and 
additional lists were made of matches, missing members of 
the input list, and extra members of the output list (see 
Table 1). 

Luminosity # of hit # of # of 
pixels unmatched unmatched 
in the members of members of 
input the input list I the output list I I I list I 

lx103’ cm-2 s-* 

2 ~ 1 0 ~ ~  cm-2 s-2 

1342 0 0 

2751 2 3 

I 4x103’ cm-’s-’ I 11643 I 33 

The number of unmatched members of the input list in 
Table, 1 is usually related to situations where hits cannot be 
accepted by a pixel. For example, if all of the Command 
State Machines are either in the Full or Output states, then no 
Command State Machines are available to be transferred to 
the Listen state. Under these conditions, the column can 
accept no new hits, and therefore, those hits are missing from 
the output list. 
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v. CONCLUSIONS 

,The FPIX Core architecture has been completed. 
Substantial improvements were made to its architecture, 
resulting in readout efficiencies greater than 99.6%. Rigid 
adherence to bottom-up design techniques, with great 
attention paid at the start of the project to propagation delays 
in low-level digital cells, resulted in a Verilog model of the 
architecture that was accurate at the gate level to the final 
design. Therefore, the Verilog model could be compared to 
the final layout using standard CAD software. The modelk 
timing was also very accurate even at the highest levels. 
Monte Carlo simulations of the interaction region performed 
by the physicists on the BTeV project were used as inputs to 
the model of the FPIX Core. This enabled the designers to 
exhaustively test the design. It also permitted the chip 
designers to present to the system designers a description of 
expected data stream coming from the chip. 
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